Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.970
Filtrar
1.
Front Vet Sci ; 11: 1368929, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38562919

RESUMO

Introduction: Canine leishmaniosis (CanL) is a systemic disease that affects dogs. When multiplication of the parasite cannot be controlled, dogs consistently show high levels of antigen and IgG antibodies, which lead to the formation of circulating immune complexes (CIC). Timely intervention to reduce the parasite load and CIC levels is crucial for preventing irreversible organ damage. However, a diagnostic test to quantify CIC levels is currently lacking. Methods: In this real-world study, we aimed to examine the performance of a new ELISA to measure CIC levels in dogs naturally infected with Leishmania infantum. Thirty-four dogs were treated according to their clinical condition and followed for 360 days. Before (day 0) and after treatment (days 30, 90, 180, 270, and 360), all dogs underwent a physical examination, and blood samples were obtained for CBC, biochemical profile, serum protein electrophoresis and IFAT. Serum PEG-precipitated CIC were determined by ELISA. Results: Our results indicate higher CIC levels in dogs in advanced disease stages showing higher antibody titres (p < 0.0001, r = 0.735), anemia (p < 0.0001), dysproteinemia (p < 0.0001), and proteinuria (p = 0.004). Importantly, dogs responding well to treatment exhibited declining CIC levels (p < 0.0001), while in poor responders and those experiencing relapses, CIC were consistently elevated. CIC emerged as a robust discriminator of relapse, with an area under the curve (AUC) of 0.808. The optimal cut-off to accurately identify relapse was an optical density of 1.539. Discussion: Our findings suggest that declining CIC levels should be expected in dogs showing a favorable treatment response. Conversely, in dogs displaying a poor response and recurrent clinical relapses, CIC levels will be high, emphasizing the need for vigilant monitoring. These findings suggest that CIC could serve as a valuable biomarker for disease progression, treatment efficacy, and relapse detection in CanL. Our study contributes to enhancing diagnostic approaches for CanL and underscores the potential of CIC as a complementary tool in veterinary practice. As we move forward, larger studies will be essential to confirm these findings and establish definitive cut-offs for clinical application.

2.
Mol Microbiol ; 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38558112

RESUMO

Metalloprotease-gp63 is a virulence factor secreted by Leishmania. However, secretory pathway in Leishmania is not well defined. Here, we cloned and expressed the GRASP homolog from Leishmania. We found that Leishmania expresses one GRASP homolog of 58 kDa protein (LdGRASP) which localizes in LdRab1- and LPG2-positive Golgi compartment in Leishmania. LdGRASP was found to bind with COPII complex, LdARF1, LdRab1 and LdRab11 indicating its role in ER and Golgi transport in Leishmania. To determine the function of LdGRASP, we generated LdGRASP knockout parasites using CRISPR-Cas9. We found fragmentation of Golgi in Ld:GRASPKO parasites. Our results showed enhanced transport of non-GPI-anchored gp63 to the cell surface leading to higher secretion of this form of gp63 in Ld:GRASPKO parasites in comparison to Ld:WT cells. In contrast, we found that transport of GPI-anchored gp63 to the cell surface is blocked in Ld:GRASPKO parasites and thereby inhibits its secretion. The overexpression of dominant-negative mutant of LdRab1 or LdSar1 in Ld:GRASPKO parasites significantly blocked the secretion of non-GPI-anchored gp63. Interestingly, we found that survival of transgenic parasites overexpressing Ld:GRASP-GFP is significantly compromised in macrophages in comparison to Ld:WT and Ld:GRASPKO parasites. These results demonstrated that LdGRASP differentially regulates Ldgp63 secretory pathway in Leishmania.

3.
Biochimie ; 223: 31-40, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38579894

RESUMO

Leishmaniasis is a spectrum of conditions caused by infection with the protozoan Leishmania spp. parasites. Leishmaniasis is endemic in 98 countries around the world, and resistance to current anti-leishmanial drugs is rising. Our work has identified and characterised a previously unstudied galactokinase-like protein (GalK) in Leishmania donovani, which catalyses the MgATP-dependent phosphorylation of the C-1 hydroxyl group of d-galactose to galactose-1-phosphate. Here, we report the production of the catalytically active recombinant protein in E. coli, determination of its substrate specificity and kinetic constants, as well as analysis of its molecular envelope using in solution X-ray scattering. Our results reveal kinetic parameters in range with other galactokinases with an average apparent Km value of 76 µM for galactose, Vmax and apparent Kcat values with 4.46376 × 10-9 M/s and 0.021 s-1, respectively. Substantial substrate promiscuity was observed, with galactose being the preferred substrate, followed by mannose, fructose and GalNAc. LdGalK has a highly flexible protein structure suggestive of multiple conformational states in solution, which may be the key to its substrate promiscuity. Our data presents novel insights into the galactose salvaging pathway in Leishmania and positions this protein as a potential target for the development of pharmaceuticals seeking to interfere with parasite substrate metabolism.

4.
Vet Res Commun ; 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38630425

RESUMO

Canine leishmaniosis is a vector-borne disease caused by Leishmania infantum, and clinical manifestations of infection range from absent or severe to fatal and result from immune-mediated mechanisms. In dogs, the most common clinical signs of leishmaniosis include skin lesions and lymphadenomegaly. However, the presence of other nontypical signs has been described, and diagnosing these cases can be challenging. The aim of the present short communication was to describe the impact of the formation of circulating immunocomplexes due to L. infantum in a dog with leishmaniosis affected by a massive venous thrombus of the caudal vena cava and external iliac veins. On admission, the dog presented bilateral cutaneous vasculopathy of the thigh and renal disease due to L. infantum infection. Two weeks after starting anti-Leishmania treatment based on meglumine antimoniate and allopurinol administration, the animal developed acute claudication of the hind limbs with the presence of a thrombus in the caudal vena cava and the external iliac veins and a high level of circulating immunocomplexes detected by enzyme-linked immunosorbent assay. Exacerbation of the humoral immune response, along with deposition of circulating immune complexes in the tissues and the concurrent presence of kidney and liver damage, might have contributed to an imbalance in haemostasis in this patient. Future studies should evaluate and analyse the pathological mechanisms contributing to thrombosis in dogs with leishmaniosis.

5.
ACS Infect Dis ; 10(4): 1414-1428, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38556987

RESUMO

PDZ protein interacting specifically with Tc10 or PIST is a mammalian trans-Golgi resident protein that regulates subcellular sorting of plasma membrane receptors. PIST has recently emerged as a key player in regulating viral pathogenesis. Nevertheless, the involvement of PIST in parasitic infections remains unexplored. Leishmania parasites infiltrate their host macrophage cells through phagocytosis, where they subsequently multiply within the parasitophorous vacuole (PV). Host cell autophagy has been found to be important in regulating this parasite infection. Since PIST plays a pivotal role in triggering autophagy through the Beclin 1-PI3KC3 pathway, it becomes interesting to identify the status of PIST during Leishmania infection. We found that while macrophage cells are infected with Leishmania major (L. major), the expression of PIST protein remains unaltered; however, it traffics from the Golgi compartment to PV. Further, we identified that in L. major-infected macrophage cells, PIST associates with the autophagy regulatory protein Beclin 1 within the PVs; however, PIST does not interact with LC3. Reduction in PIST protein through siRNA silencing significantly increased parasite burden, whereas overexpression of PIST in macrophages restricted L. major infectivity. Together, our study reports that the macrophage PIST protein is essential in regulating L. major infectivity.


Assuntos
Leishmania major , Leishmaniose , Parasitos , Animais , Leishmania major/metabolismo , Proteína Beclina-1/metabolismo , Proteínas de Transporte/metabolismo , Macrófagos/metabolismo , Parasitos/metabolismo , Mamíferos/metabolismo
6.
Int J Parasitol ; 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38570155

RESUMO

Canine leishmaniosis (CanL), caused by Leishmania infantum, is a complex disease of growing importance in Europe. Clinical manifestations result from the down-modulation of the host immune response through multiple host-parasite interactions. Although several factors might influence CanL progression, this is the first known study evaluating risk factors for its different clinical stages in a large referral hospital population (n = 35.669) from an endemic area, over a 20 year period. Genome-wide scans for selection signatures were also conducted to explore the genomic component of clinical susceptibility to L. infantum infection. The prevalence of CanL was 3.2% (16.7% stage I; 43.6% stage II; 32.1% stage III; 7.6% stage IV). Dog breed (crossbreed), bodyweight (<10 kg), living conditions (indoors), regular deworming treatment, and being vaccinated against Leishmania significantly decreased the transmission risk and the risk for developing severe clinical forms. Conversely, the detection of comorbidities was associated with advanced clinical forms, particularly chronic kidney disease, neoplasia, cryptorchidism, infectious tracheobronchitis and urate urolithiasis, although those did not impact the clinical outcome. Significant associations between an increased risk of severe clinical stages and findings in the anamnesis (renal or skin-related manifestations) and physical examination (ocular findings) were also detected, highlighting their diagnostic value in referred cases of CanL. Sixteen breeds were found to be significantly more susceptible to developing severe stages of leishmaniosis (e.g. Great Dane, Rottweiler, English Springer Spaniel, Boxer, American Staffordshire Terrier, Golden Retriever), while 20 breeds displayed a clinical resistantance phenotype and, thus, are more likely to mount an efficient immune response against L. infantum (e.g. Pointer, Samoyed, Spanish Mastiff, Spanish Greyhound, English Setter, Siberian Husky). Genomic analyses of these breeds retrieved 12 regions under selection, 63 candidate genes and pinpointed multiple biological pathways such as the IRE1 branch of the unfolded protein response, which could play a critical role in clinical susceptibility to L. infantum infection.

7.
Methods Mol Biol ; 2782: 137-146, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38622398

RESUMO

Leishmania, an intra-macrophage kinetoplastid parasite, modulates a vast array of defensive mechanisms of the host macrophages to create a comfortable environment for their survival. When the host encounters intracellular pathogens, a multimeric protein complex called NLRP3 inflammasome gets turned on, leading to caspase-1 activation-mediated maturation of IL-1ß from its pro-form. However, Leishmania often manages to neutralize inflammasome activation by manipulating negative regulatory molecules of the host itself. Exhaustion of NLRP3 and pro-IL-1ß result from decreased NF-κB activity in infection, which was attributed to increased expression of A20, a negative regulator of NF-κB signalling. Moreover, reactive oxygen species, another key requirement for inflammasome activation, are inhibited by mitochondrial uncoupling protein 2 (UCP2) which is upregulated by Leishmania. Inflammasome activation is a complex event and procedures involved in monitoring inflammasome activation need to be accurate and error-free. In this chapter, we summarize the protocol that includes various experimental procedures required for the determination of the status of inflammasomes in Leishmania-infected macrophages.


Assuntos
Inflamassomos , Leishmania , Inflamassomos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Leishmania/metabolismo , NF-kappa B/metabolismo , Macrófagos/metabolismo , Interleucina-1beta/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Caspase 1/metabolismo
8.
Antimicrob Agents Chemother ; : e0136823, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38572959

RESUMO

Leishmaniasis is a neglected tropical disease infecting the world's poorest populations. Miltefosine (ML) remains the primary oral drug against the cutaneous form of leishmaniasis. The ATP-binding cassette (ABC) transporters are key players in the xenobiotic efflux, and their inhibition could enhance the therapeutic index. In this study, the ability of beauvericin (BEA) to overcome ABC transporter-mediated resistance of Leishmania tropica to ML was assessed. In addition, the transcription profile of genes involved in resistance acquisition to ML was inspected. Finally, we explored the efflux mechanism of the drug and inhibitor. The efficacy of ML against all developmental stages of L. tropica in the presence or absence of BEA was evaluated using an absolute quantification assay. The expression of resistance genes was evaluated, comparing susceptible and resistant strains. Finally, the mechanisms governing the interaction between the ABC transporter and its ligands were elucidated using molecular docking and dynamic simulation. Relative quantification showed that the expression of the ABCG sub-family is mostly modulated by ML. In this study, we used BEA to impede resistance of Leishmania tropica. The IC50 values, following BEA treatment, were significantly reduced from 30.83, 48.17, and 16.83 µM using ML to 8.14, 11.1, and 7.18 µM when using a combinatorial treatment (ML + BEA) against promastigotes, axenic amastigotes, and intracellular amastigotes, respectively. We also demonstrated a favorable BEA-binding enthalpy to L. tropica ABC transporter compared to ML. Our study revealed that BEA partially reverses the resistance development of L. tropica to ML by blocking the alternate ATP hydrolysis cycle.

9.
J Travel Med ; 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38578988

RESUMO

In Europe, American cutaneous leishmaniasis caused by Leishmania mexicana is a rare imported disease. A series of six cases in 2023 is a noteworthy escalation at our institutions compared to the past two decades. This surge is likely linked to an increase of cases and environmental changes in South-Eastern Mexico.

10.
BMC Microbiol ; 24(1): 117, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38575882

RESUMO

BACKGROUND: Leishmaniasis as a neglected tropical disease (NTD) is caused by the inoculation of Leishmania parasites via the bite of phlebotomine sand flies. After an infected bite, a series of innate and adaptive immune responses occurs, among which neutrophils can be mentioned as the initiators. Among the multiple functions of these fighting cells, neutrophil extracellular traps (NETs) were studied in the presence of Leishmania major promastigotes and salivary gland homogenates (SGH) of Phlebotomus papatasi alone, and in combination to mimic natural conditions of transmission. MATERIAL & METHODS: The effect of L. major and SGH on NETs formation was studied in three different groups: neutrophils + SGH (NS), neutrophils + L. major (NL), neutrophils + L. major + SGH (NLS) along with negative and positive controls in 2, 4 and 6 h post-incubation. Different microscopic methods were used to visualize NETs comprising: fluorescence microscopy by Acridine Orange/ Ethidium Bromide staining, optical microscopy by Giemsa staining and scanning electron microscopy. In addition, the expression level of three different genes NE, MPO and MMP9 was evaluated by Real-Time PCR. RESULTS: All three microscopical methods revealed similar results, as in NS group, chromatin extrusion as a sign of NETosis, was not very evident in each three time points; but, in NL and especially NLS group, more NETosis was observed and the interaction between neutrophils and promastigotes in NL and also with saliva in NLS group, gradually increased over times. Real-time reveals that, the expression of MPO, NE and MMP9 genes increased during 2 and 4 h after exposure, and then decreased at 6 h in most groups. CONCLUSION: Hence, it was determined that the simultaneous presence of parasite and saliva in NLS group has a greater impact on the formation of NETs compared to NL and NS groups.


Assuntos
Armadilhas Extracelulares , Leishmania major , Phlebotomus , Animais , Humanos , Phlebotomus/genética , Phlebotomus/parasitologia , Metaloproteinase 9 da Matriz , Neutrófilos , Glândulas Salivares
11.
Microb Genom ; 10(4)2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38578294

RESUMO

In Morocco, cutaneous leishmaniasis (CL) caused by Leishmania (L.) tropica is an important health problem. Despite the high incidence of CL in the country, the genomic heterogeneity of these parasites is still incompletely understood. In this study, we sequenced the genomes of 14 Moroccan isolates of L. tropica collected from confirmed cases of CL to investigate their genomic heterogeneity. Comparative genomics analyses were conducted by applying the recently established Genome Instability Pipeline (GIP), which allowed us to conduct phylogenomic and principal components analyses (PCA), and to assess genomic variations at the levels of the karyotype, gene copy number, single nucleotide polymorphisms (SNPs) and small insertions/deletions (INDELs) variants. Read-depth analyses revealed a mostly disomic karyotype, with the exception of the stable tetrasomy of chromosome 31. In contrast, we identified important gene copy number variations across all isolates, which affect known virulence genes and thus were probably selected in the field. SNP-based cluster analysis of the 14 isolates revealed a core group of 12 strains that formed a tight cluster and shared 45.1 % (87 751) of SNPs, as well as two strains (M3015, Ltr_16) that clustered separately from each other and the core group, suggesting the circulation of genetically highly diverse strains in Morocco. Phylogenetic analysis, which compared our 14 L. tropica isolates against 40 published genomes of L. tropica from a diverse array of locations, confirmed the genetic difference of our Moroccan isolates from all other isolates examined. In conclusion, our results indicate potential regional variations in SNP profiles that may differentiate Moroccan L. tropica from other L. tropica strains circulating in endemic countries in the Middle East. Our report paves the way for future research with a larger number of strains that will allow correlation of diverse phenotypes (resistance to treatments, virulence) and origins (geography, host species, year of isolation) to defined genomic signals such as gene copy number variations or SNP profiles that may represent interesting biomarker candidates.


Assuntos
Leishmania tropica , Leishmaniose Cutânea , Humanos , Leishmania tropica/genética , Filogenia , Variações do Número de Cópias de DNA , Marrocos/epidemiologia , Leishmaniose Cutânea/epidemiologia , Leishmaniose Cutânea/parasitologia , Genômica
12.
Int J Mol Sci ; 25(7)2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38612484

RESUMO

Twenty 2-(4-alkyloxyphenyl)-imidazolines and 2-(4-alkyloxyphenyl)-imidazoles were synthesized, with the former being synthesized in two steps by using MW and ultrasonication energy, resulting in good to excellent yields. Imidazoles were obtained in moderate yields by oxidizing imidazolines with MnO2 and MW energy. In response to the urgent need to treat neglected tropical diseases, a set of 2-(4-alkyloxyphenyl)- imidazolines and imidazoles was tested in vitro on Leishmania mexicana and Trypanosoma cruzi. The leishmanicidal activity of ten compounds was evaluated, showing an IC50 < 10 µg/mL. Among these compounds, 27-31 were the most active, with IC50 values < 1 µg/mL (similar to the reference drugs). In the evaluation on epimastigotes of T. cruzi, only 30 and 36 reached an IC50 < 1 µg/mL, showing better inhibition than both reference drugs. However, compounds 29, 33, and 35 also demonstrated attractive trypanocidal activities, with IC50 values < 10 µg/mL, similar to the values for benznidazole and nifurtimox.


Assuntos
Antiprotozoários , Doença de Chagas , Imidazolinas , Leishmania mexicana , Trypanosoma cruzi , Humanos , Imidazóis/farmacologia , Compostos de Manganês , Óxidos , Antiprotozoários/farmacologia
13.
Int J Mol Sci ; 25(7)2024 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-38612903

RESUMO

Proteins of the sorting nexin (SNX) family present a modular structural architecture with a phox homology (PX) phosphoinositide (PI)-binding domain and additional PX structural domains, conferring to them a wide variety of vital eukaryotic cell's functions, from signal transduction to membrane deformation and cargo binding. Although SNXs are well studied in human and yeasts, they are poorly investigated in protists. Herein, is presented the characterization of the first SNX identified in Leishmania protozoan parasites encoded by the LdBPK_352470 gene. In silico secondary and tertiary structure prediction revealed a PX domain on the N-terminal half and a Bin/amphiphysin/Rvs (BAR) domain on the C-terminal half of this protein, with these features classifying it in the SNX-BAR subfamily of SNXs. We named the LdBPK_352470.1 gene product LdSNXi, as it is the first SNX identified in Leishmania (L.) donovani. Its expression was confirmed in L. donovani promastigotes under different cell cycle phases, and it was shown to be secreted in the extracellular medium. Using an in vitro lipid binding assay, it was demonstrated that recombinant (r) LdSNXi (rGST-LdSNXi) tagged with glutathione-S-transferase (GST) binds to the PtdIns3P and PtdIns4P PIs. Using a specific a-LdSNXi antibody and immunofluorescence confocal microscopy, the intracellular localization of endogenous LdSNXi was analyzed in L. donovani promastigotes and axenic amastigotes. Additionally, rLdSNXi tagged with enhanced green fluorescent protein (rLdSNXi-EGFP) was heterologously expressed in transfected HeLa cells and its localization was examined. All observed localizations suggest functions compatible with the postulated SNX identity of LdSNXi. Sequence, structure, and evolutionary analysis revealed high homology between LdSNXi and the human SNX2, while the investigation of protein-protein interactions based on STRING (v.11.5) predicted putative molecular partners of LdSNXi in Leishmania.


Assuntos
Leishmania , Humanos , Leishmania/genética , Células HeLa , Nexinas de Classificação/genética , Transdução de Sinais , Anticorpos , Glutationa Transferase
14.
mBio ; : e0085924, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38639536

RESUMO

Visceral leishmaniasis is a deadly infectious disease and is one of the world's major neglected health problems. Because the symptoms of infection are similar to other endemic diseases, accurate diagnosis is crucial for appropriate treatment. Definitive diagnosis using splenic or bone marrow aspirates is highly invasive, and so, serological assays are preferred, including the direct agglutination test (DAT) or rK39 strip test. These tests, however, are either difficult to perform in the field (DAT) or lack specificity in some endemic regions (rK39), making the development of new tests a research priority. The availability of Leishmania spp. genomes presents an opportunity to identify new diagnostic targets. Here, we use genome data and a mammalian protein expression system to create a panel of 93 proteins consisting of the extracellular ectodomains of the Leishmania donovani cell surface and secreted proteins. We use these panel and sera from murine experimental infection models and natural human and canine infections to identify new candidates for serological diagnosis. We observed a concordance between the most immunoreactive antigens in different host species and transmission settings. The antigen encoded by the LdBPK_323600.1 gene can diagnose Leishmania infections with high sensitivity and specificity in patient cohorts from different endemic regions including Bangladesh and Ethiopia. In longitudinal sampling of treated patients, we observed reductions in immunoreactivity to LdBPK_323600.1 suggesting it could be used to diagnose treatment success. In summary, we have identified new antigens that could contribute to improved serological diagnostic tests to help control the impact of this deadly tropical infectious disease. IMPORTANCE: Visceral leishmaniasis is fatal if left untreated with patients often displaying mild and non-specific symptoms during the early stages of infection making accurate diagnosis important. Current methods for diagnosis require highly trained medical staff to perform highly invasive biopsies of the liver or bone marrow which pose risks to the patient. Less invasive molecular tests are available but can suffer from regional variations in their ability to accurately diagnose an infection. To identify new diagnostic markers of visceral leishmaniasis, we produced and tested a panel of 93 proteins identified from the genome of the parasite responsible for this disease. We found that the pattern of host antibody reactivity to these proteins was broadly consistent across naturally acquired infections in both human patients and dogs, as well as experimental rodent infections. We identified a new protein called LdBPK_323600.1 that could accurately diagnose visceral leishmaniasis infections in humans.

15.
Animals (Basel) ; 14(7)2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38612318

RESUMO

Leishmania infantum is a zoonotic protozoan parasite distributed worldwide that is transmitted by phlebotomine sandflies. Dogs are the main reservoir for human infections. However, in recent years, the capacity of lagomorphs to contribute to Leishmania transmission has been confirmed. The present study aimed to assess Leishmania spp. exposure and infection in lagomorphs and sympatric domestic dogs in NE Spain. Sera from European hares, European rabbits, and rural dogs were tested for antibodies against L. infantum using an in-house indirect ELISA. PCR analysis targeting Leishmania spp. was performed in spleens from L. europaeus. Antibodies against Leishmania spp. were detected in all the species analyzed. Total sample prevalence was significantly higher in O. cuniculus (27.9%) than in L. europaeus (2.0%). Results of the PCR were all negative. The present study expands knowledge about Leishmania infections in free-ranging lagomorphs in the Iberian Peninsula, suggesting a more important role of O. cuniculus in the study area. Given the strong correlation between lagomorph densities and human leishmaniasis outbreaks in Spain, the high rabbit and human densities in NE Spain, and the high Leishmania spp. seroprevalence in rabbits, it becomes imperative to establish surveillance programs for lagomorphs in this region.

16.
Artigo em Inglês | MEDLINE | ID: mdl-38621148

RESUMO

Background: Leishmaniasis is a zoonotic protozoan infection which is endemic in parts of Europe. Dogs are commonly affected by Leishmania infantum and are regarded as the main reservoir for humans' infection. Sporadic human cases are reported annually, mainly from the endemic south part of Bulgaria. However, no recent data on canine leishmaniasis geographical distribution in Bulgaria have been published. The aim of this study was to investigate the current seroprevalence rate of L. infantum in stray dogs from areas where this infection was not previously reported. Results: The estimated overall seroprevalence rate was 8.3% (95% confidence interval [CI]: 2.6-14.0) with no significant difference between the two examined districts [χ2 (1, N = 90) = 0.32, p = 0.69]. In Sofia, the seropositivity was 7.2% (95% CI: 0.9-13.5) and in Sofia (stolitsa) 11.0% (95% CI: 0-23.0). No association between sex and serological status [χ2 (1, N = 90) = 1.83, p = 0.27] and age and seropositivity [χ2 (2, N = 90) = 1.98, p = 0.52] was detected. High levels of antibodies (fourfold increase from the assay's cut-off) were observed in half of the positive dogs.

17.
Res Vet Sci ; 172: 105256, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38613921

RESUMO

Infection and clinical cases of leishmaniasis caused by Leishmania infantum in cats have been increasingly reported in several countries, including Brazil. In this study, we used an enzyme-linked immunosorbent assay (ELISA) and an immunochromatographic test (ICT) based on a recombinant antigen (rKDDR-plus) to detect anti-Leishmania antibodies in cats from an animal shelter in northeastern Brazil. We compared the results with an ELISA using L. infantum crude antigen (ELISA-CA). We also investigated the presence of Leishmania DNA in blood or ocular conjunctival samples as well as the association between Leishmania PCR positivity and serological positivity to feline immunodeficiency virus (FIV), feline leukemia virus (FeLV) and Toxoplasma gondii. Concerning serological assays, a higher positivity was detected using the ICT-rKDDR-plus (7.5%; 7/93) as compared to ELISA-rKDDR-plus (5.4%; 5/93) and ELISA-CA (4.3%; 4/93). Upon PCR testing, 52.7% (49/93) of the ocular conjunctival swabs and 48.3% (44/91) of the blood samples were positive. Together, PCR and serological testing revealed overall positivities of 73.1% (68/93) and 12.9% (12/93), respectively. Among PCR-positive samples, 45.5% (31/68) showed co-infection with FIV, 17.6% (12/68) with FeLV, and 82.3% (56/68) with T. gondii. More than half of the PCR-positive cats showed at least one clinical sign suggestive of leishmaniasis (58.8%; 40/68) and dermatological signs were the most frequent ones (45.5%; 31/68). Both tests employing the recombinant antigen rKDDR-plus (i.e., ICT-rKDDR-plus and ELISA-rKDDR-plus) detected more positive cats than the ELISA-CA but presented low overall accuracy. PCR testing using either blood or ocular conjunctival samples detected much more positive cats than serological tests.

18.
Biochim Biophys Acta Proteins Proteom ; 1872(4): 141016, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38615987

RESUMO

Acyl-Coenzyme A binding domain containing proteins (ACBDs) are ubiquitous in nearly all eukaryotes. They can exist as a free protein, or a domain of a large, multidomain, multifunctional protein. Besides modularity, ACBDs also display multiplicity. The same organism may have multiple ACBDs, differing in sequence and organization. By virtue of this diversity, ACBDs perform functions ranging from transport, synthesis, trafficking, signal transduction, transcription, and gene regulation. In plants and some microorganisms, these ACBDs are designated ACBPs (acyl-CoA binding proteins). The simplest ACBD/ACBP is a small, ∼10 kDa, soluble protein, comprising the acyl-CoA binding (ACB) domain. Most of these small ACBDs exist as monomers, while a few show a tendency to oligomerize. In sync with those studies, we report the crystal structure of two ACBDs from Leishmania major, named ACBP103, and ACBP96 based on the number of residues present. Interestingly, ACBP103 crystallized as a monomer and a dimer under different crystallization conditions. Careful examination of the dimer disclosed an exposed 'AXXA' motif in the helix I of the two ACBP103 monomers, aligned in a head-to-tail arrangement in the dimer. Glutaraldehyde cross-linking studies confirm that apo-ACBP103 can self-associate in solution. Isothermal titration calorimetry studies further show that ACBP103 can bind ligands ranging from C8 - to C20-CoA, and the data could be best fit to a 'two sets of sites'/sequential binding site model. Taken together, our studies show that Leishmania major ACBP103 can self-associate in the apo-form through a unique dimerization motif, an interaction that may play an important role in its function.

19.
Chem Biol Drug Des ; 103(4): e14525, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38627214

RESUMO

An early exploration of the benzothiazole class against two kinetoplastid parasites, Leishmania infantum and Trypanosoma cruzi, has been performed after the identification of a benzothiazole derivative as a suitable antileishmanial initial hit. The first series of derivatives focused on the acyl fragment of its class, evaluating diverse linear and cyclic, alkyl and aromatic substituents, and identified two other potent compounds, the phenyl and cyclohexyl derivatives. Subsequently, new compounds were designed to assess the impact of the presence of diverse substituents on the benzothiazole ring or the replacement of the endocyclic sulfur by other heteroatoms. All compounds showed relatively low cytotoxicity, resulting in decent selectivity indexes for the most active compounds. Ultimately, the in vitro ADME properties of these compounds were assessed, revealing a satisfying water solubility, gastrointestinal permeability, despite their low metabolic stability and high lipophilicity. Consequently, compounds 5 and 6 were identified as promising hits for further hit-to-lead exploration within this benzothiazole class against L. infantum, thus providing promising starting points for the development of antileishmanial candidates.


Assuntos
Antiprotozoários , Leishmania infantum , Trypanosoma cruzi , Antiprotozoários/farmacologia , Benzotiazóis/farmacologia
20.
Traffic ; 25(4): e12935, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38629580

RESUMO

The protozoan parasites Plasmodium falciparum, Leishmania spp. and Trypanosoma cruzi continue to exert a significant toll on the disease landscape of the human population in sub-Saharan Africa and Latin America. Control measures have helped reduce the burden of their respective diseases-malaria, leishmaniasis and Chagas disease-in endemic regions. However, the need for new drugs, innovative vaccination strategies and molecular markers of disease severity and outcomes has emerged because of developing antimicrobial drug resistance, comparatively inadequate or absent vaccines, and a lack of trustworthy markers of morbid outcomes. Extracellular vesicles (EVs) have been widely reported to play a role in the biology and pathogenicity of P. falciparum, Leishmania spp. and T. cruzi ever since they were discovered. EVs are secreted by a yet to be fully understood mechanism in protozoans into the extracellular milieu and carry a cargo of diverse molecules that reflect the originator cell's metabolic state. Although our understanding of the biogenesis and function of EVs continues to deepen, the question of how EVs in P. falciparum, Leishmania spp. and T. cruzi can serve as targets for a translational agenda into clinical and public health interventions is yet to be fully explored. Here, as a consortium of protozoan researchers, we outline a plan for future researchers and pose three questions to direct an EV's translational agenda in P. falciparum, Leishmania spp. and T. cruzi. We opine that in the long term, executing this blueprint will help bridge the current unmet needs of these medically important protozoan diseases in sub-Saharan Africa and Latin America.


Assuntos
Doença de Chagas , Vesículas Extracelulares , Leishmania , Parasitos , Trypanosoma cruzi , Animais , Humanos , Doença de Chagas/epidemiologia , Doença de Chagas/parasitologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...